$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1} & \text { Use of resistors in parallel formula } & \text { (1) } \\ & \text { Use of resistors in series formula } & \text { (1) }\end{array}\right]$

Question Number	Answer	Mark	
2(a)	Correct curve in + + section (accept $V-I$ or $I-V$ graph but axes must be labelled) Symmetrical negative curve (accept if ++ curve incorrect) I	(1)	2
2(b)	Drift velocity (of electrons) increases (as current increases) Or electrons gain (kinetic) energy (as current increases) Or rate of flow of electrons/charge increases (as current increases) More (frequent) collisions of electrons with lattice ions lattice ion vibrations increased Or (More) energy dissipated as heat in lattice Or (More) energy transferred when electrons collide with lattice ions (accept charge carriers for electrons and atoms/ions/particles for lattice ions.)	(1)	(1)

Question Number	Answer	Mark
4(a)(i)	Resistance at $20^{\circ} \mathrm{C}=1250-1300(\Omega)$	$\mathbf{(1)}$
4(a)(ii)	Converts $\mathrm{k} \Omega \rightarrow \Omega$ [look for $1000(\Omega)]$ Use of potential divider formula OR use of $2300(\Omega)$ to find current Reading on voltmeter $=2.6-2.7 \mathrm{~V}$ (ecf value from (a)(i)) Example of calculation $\mathrm{V}=(1000 \Omega \div 2300 \Omega) \times 6 \mathrm{~V}$ $\mathrm{~V}=2.6 \mathrm{~V}$	$\mathbf{(\mathbf { 1 })}$
4(b)	(decreasing temp causes) resistance of thermistor to increase Voltmeter reading decreases Candidates who think resistance will decrease leading to voltmeter increase can get 2nd mark.	$\mathbf{(1)}$
	Tl)	

Question Number	Answer	Mark
5(a)	Effect of stretching wire Refers to $\mathrm{R}=\rho \mathrm{l} / \mathrm{A}$ Increasing length leads to increase in resistance Decreasing area leads to increase in resistance [must relate thinner to area] [last two points may be combined to give single statement, can score both marks]	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	Resistance calculation Use of $R=\rho \mathrm{l} / \mathrm{A}$ $\times 8$ $\mathrm{R}=0.22(\Omega)$ [Omitting x8 gives $\mathrm{R}=0.028 \Omega$ scores 1] Example of answer $\begin{aligned} & R=\left(9.9 \times 10^{-8} \Omega \mathrm{~m}\right) \times(8 \times 0.025 \mathrm{~m}) \div 0.9 \times 10^{-7} \mathrm{~m}^{2} \\ & \mathrm{R}=0.22 \Omega \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(c) (i)	Relationship and increase in R Attempts to substitute for $\mathrm{A}=\mathrm{V} / \mathrm{I}$ in $\mathrm{R}=\rho \mathrm{l} / \mathrm{A}$ $\mathrm{R}=\mathrm{\rho}^{2} / \mathrm{V}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	Any attempt to relate original resistance of gauge to 2.5^{2} (possibly $\times 8, \mathrm{~cm}$ or m) Relates this to resistance associated with increase in length Change in resistance $=1.76 \times 10^{-3} \Omega$ OR Uses V $=\mathrm{A}$ to find new area Uses this A with new length to find new R Change in resistance $=1.76 \times 10^{-3} \Omega$ [if candidate assumes A constant and finds new R and $\Delta R=$ 0.001Ω, score 1 mark] Example of answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

	New $\mathrm{R}=\left(\frac{2.51^{2}}{2.5^{2}} \times 0.22\right)-0.22$			
(d)	$\Delta \mathrm{R}=1.76 \times 10^{-3} \Omega$		\quad	Zigzag pattern
:---				
Each section of wire increases in length/ gives a longer total length/ long wire in small space Small change in length of gauge leads to larger change in resistance				

Question Number	Answer		Mark
6(a)	Resistance of parallel combination much less than resistance of V_{1} (Therefore) voltage of parallel combination is much less than voltage of V_{1} Or Identifies current (nearly) zero (because of resistance of V_{1} very large) (So) p.d. across 10Ω is zero by $V=I R$ (Credit for each marking point may be obtained by completing a calculation.)	(1) (1) (1) (1)	2
6(b)	Identifies resistance of parallel combination is $5 \mathrm{M} \Omega$ Use of resistors in parallel formula $R=10 \mathrm{M} \Omega$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & (1) \end{aligned}$	3
	Total for question		5

Question Number	Answer		Mark
7(a)	$(\Omega=) \mathrm{V} \mathrm{A}^{-1} \mathbf{O R}(\Omega=)$ V/A OR $R=V / I$ [OR volt in alternative equivalent units divided by ampere in alternative equivalent units, as long as Ω isn't part of it] [Units and quantities must not be mixed.]	(1)	
7(b)(i)	Use of $R=V / I$ with values feasibly from the graph $R=6.8 \Omega$ to 8.0Ω (marks not awarded if using a gradient)	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
7(b)(ii)	resistance of metal remains constant resistance of thermistor decreases (as p.d. increases)	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
7(b)(iii)	(Increasing) current leads to temperature increase / leads to thermistor 'heating up’ More conduction electrons / more electrons released / more free electrons / more charge carriers / charge carrier density increased / n increases	(1) (1)	2
	Total for question		7

Question Number	Answer	Mark
8(a)	Use of $P=V^{2} / R$ OR $P=I V$ and $V=I R$ $R=48.4 \Omega$ (accept 48Ω or 50Ω) Example of calculation $\begin{aligned} & R=V^{2} / P \\ & R=220 \times 220 / 1000 \\ & R=48.4 \Omega \end{aligned}$	2
8(b)	```Use of \(E=P t\) OR \(E=V\) It OR \(E=V^{2} t / R\) with 3 or \(3 \times 60\) as the time (1) \(E=180000 \mathrm{~J}\) (ecf values of \(R\) and/or \(I\) from (a)) (3000 J scores 1 mark)```	2
8(c)(i)	Attempts to calculate power Power $=250 \mathrm{~W}$ Time to boil 12 mins/ 720 s OR Calculates new current 2.27 A Use of Energy=VIt with their current Time $=12$ mins $/ 720 \mathrm{~s}$ (because of rounding, accept 700s -740 s if method correct) OR $\begin{equation*} P \alpha V^{2} \alpha 1 / 4 \tag{1} \end{equation*}$ $t \alpha 1 / P \alpha 4$ time 12 mins (for any method, an answer of 6 mins scores 1 mark)	3
8(c)(ii)	Use of equation, $V=I R$ or $P=V^{2} / R$ or $P=V I$ leading to increased current or power. Cause damage/fuse to melt/ circuit breaker to trip /element to burn out/wire to melt Do not credit 'short circuit' and 'explosions' Do not give 2nd mark if reference to overheating or fuses is related to resistance increasing	2
	Total for question	9

Question Number	Answer	Mark
$\mathbf{9 (a)}$	Use of resistors in parallel formula $R=9.1 \Omega$ Example of answer $1 / R=1 / 10+1 / 100$ $1 / R=11 / 100$ $R=9.1 \Omega$	$\mathbf{1}$
(b)	Voltmeter is connected in parallel (stated or implied) OR voltmeter draws little/no current Resistors in parallel formula with either R_{V} or large value used $1 / \mathrm{R}_{\mathrm{V}}$ is very small/negligible OR calculated value of 9.1Ω with comment	$\mathbf{1}$
	Total for question	$\mathbf{1}$
		$\mathbf{1}$

