Question	Answer	Mark
Number		
1	Use of resistors in parallel formula (1)	
	Use of resistors in series formula (1)	
	$R = 68 \Omega $ (1)	
	$\frac{\text{Example of calculation}}{(1/22 \ \Omega) + (1/620 \ \Omega)} = 0.0471 \ \Omega^{-1}$ Resistance for parallel section = 21.2 Ω	
	$47 \ \Omega + 21.2 \ \Omega = 68.2 \ \Omega$	3
	Total for question	3

Question Number	Answer	Mark
2(a)	Correct curve in $+$ + section (accept $V - I$ or $I - V$ graph but axes must be labelled) (1)	
	Symmetrical negative curve (accept if ++ curve incorrect) (1) I V	2
2(b)	Drift velocity (of electrons) increases (as current increases)	
	Or rate of flow of electrons/charge increases (as current increases) (1)	
	More (frequent) collisions of electrons with lattice ions (1)	
	lattice ion vibrations increased Or (More) energy dissipated as heat in lattice Or (More) energy transferred when electrons collide with lattice ions (1) (accept charge carriers for electrons and atoms/ions/particles for lattice ions.)	3
	Total for question	5

	Answer				Mark
3(a)		Switch combination	Total resistance of circuit		
		A open. B closed.	R		
		A open. B open.	2 <i>R</i>	(1)	
		A closed. B closed.	<i>R</i> /2 or 0.5 R	(1)	
		A closed. B open.	2 <i>R</i> /3 or 0.7 R	(1)	3
	Answers	must be in simplest form, e.	g. not $R + R$		
3(b)	Reference (Accept of (most por resistance [Ignore th	e to $P = V^2/R$ OR $P = VI$ and energy equations.) wer/energy) from the switch e he table when awarding these	V = IR combination with the lowest e method marks.]	(1) (1)	2
3 (c)	(Internal Or cause less energ	resistance will) reduce curre e lost volts Or energy transfe gy/power output (in all comb	ent Or reduce <i>V</i> Or increase total <i>i</i> erred to internal resistance pinations)	R (1) (1)	2
	Total for	r question			7

Question Number	Answer	Mark
4(a)(i)	Resistance at 20 °C = 1250 - 1300 (Ω)	(1)
4(a)(ii)	Converts $k\Omega \rightarrow \Omega$ [look for 1000 (Ω)] Use of potential divider formula	(1)
	OR use of 2300 (Ω) to find current Reading on voltmeter = 2.6 - 2.7 V (ecf value from (a)(i))	(1) (1)
	Example of calculation	
	$V = (1000 \ \Omega \div 2300 \ \Omega) \times 6 \ V$ $V = 2.6 \ V$	
4(b)	(decreasing temp causes) resistance of <u>thermistor</u> to increase Voltmeter reading decreases	(1) (1)
	Candidates who think resistance will decrease leading to voltmeter increase can get 2nd mark.	
	Total for question	6

Question	Answer	Mark
Number		
5 (a)	Effect of stretching wire	
	Refers to $R = \rho I / A$	1
	Increasing length leads to increase in resistance	1
	Decreasing area leads to increase in resistance [must relate thinner to area]	1
	[last two points may be combined to give single statement, can score both marks]	
(b)	Resistance calculation	
	Use of $R = \rho I / A$	1
	× 8	1
	$R = 0.22 \; (\Omega)$	1
	[Omitting x8 gives R = 0.028 Ω scores 1]	
	Example of answer	
	$R = (9.9 \times 10^{-8} \Omega \mathrm{m}) \times (8 \times 0.025 \mathrm{m}) \div 0.9 \times 10^{-7} \mathrm{m}^{-2}$	
	$R = 0.22 \ \Omega$	
(c)	Relationship and increase in R	
(i)	Attempts to substitute for $A = V/I$ in $R = \rho I/A$	1
	$R = \rho I^2 / V$	1
(ii)	Any attempt to relate original resistance of gauge to $2 E^2$	1
(11)	possibly × 8, cm or m)	
	Relates this to resistance associated with increase in length	1
	Change in resistance = 1.76 × 10 ⁻³ Ω	1
	OR	
	Uses V=IA to find new area	1
	Uses this A with new length to find new R	1
	Change in resistance = $1.76 \times 10^{-3} \Omega$	1
	[if candidate assumes A constant and finds new R and ΔR = 0.001 $\Omega,$ score 1 mark]	
	Example of answer	

	New $R = (\frac{2.51^2}{2.5^2} \times 0.22) - 0.22$ $\Delta R = 1.76 \times 10^{-3} \Omega$	
(d)	Zigzag pattern	
	Each section of wire increases in length/gives a longer total length/long wire in small space	1
	Small change in length of gauge leads to larger change in resistance	1
	Total for question	13

Question Number	Answer		Mark
6(a)	Resistance of parallel combination much less than resistance of V_1	(1)	
	(Therefore) voltage of parallel combination is much less than voltage of		
	V ₁	(1)	
	Or		
	Identifies current (nearly) zero (because of resistance of V_1 very large)	(1)	
	(So) p.d. across 10 Ω is zero by $V = IR$	(1)	2
	(Credit for each marking point may be obtained by completing a calculation.)		
6(b)	Identifies resistance of parallel combination is 5 M Ω	(1)	
	Use of resistors in parallel formula	(1)	
	$R = 10 \text{ M}\Omega$	(1)	3
	Total for question		5

Question Number	Answer	Mark
7(a)	$(\Omega =) V A^{-1} OR (\Omega =) V/A OR R = V/I [OR volt in alternative $ (1)	
	equivalent units divided by ampere in alternative equivalent units, as	
	long as Ω isn't part of it]	
	[Units and quantities must not be mixed.]	
7(b)(i)	Use of $R = V/I$ with values feasibly from the graph (1)	
	$R = 6.8 \ \Omega \text{ to } 8.0 \ \Omega \tag{1}$	2
	(marks not awarded if using a gradient)	
7(b)(ii)	resistance of metal remains constant (1)	
	resistance of thermistor decreases (as p.d. increases) (1)	2
7(b)(iii)	(Increasing) current leads to temperature increase / leads to thermistor (1)	
	'heating up'	
	More conduction electrons / more electrons released / more free (1)	2
	electrons / more charge carriers / charge carrier density increased / n	
	increases	
	Total for question	7

Question	Answer		Mark
Number			
8 (a)	Use of $P = V^2/R$ OR $P = IV$ and $V = IR$	(1)	
	$R = 48.4 \ \Omega$ (accept 48 Ω or 50 Ω)	(1)	2
	Example of calculation		
	$R = V^2/P$		
	$R = 220 \times 220 / 1000$		
	$R = 48.4 \ \Omega$		
8 (b)	Use of $E = Pt$ OR $E = VIt$ OR $E = V^2 t/R$ with 3 or 3×60 as the time	(1)	
	$E = 180\ 000\ J$	(1)	2
	(ecf values of <i>R</i> and/or <i>I</i> from (a))		
	(3000 J scores 1 mark)		
8(c)(i)	Attempts to calculate power	(1)	
	Power = 250 W	(1)	
	Time to boil 12 mins/ 720 s	(1)	
	OR		
	Calculates new current 2.27 A	(1)	
	Use of Energy=VIt with their current	(1)	
	Time = $12 \text{ mins} / 720 \text{ s}$ (because of rounding, accept 700s -740 s if mo	ethod	
	correct)	(1)	
	OR		
	$P \alpha V^2 \alpha \frac{1}{4}$	(1)	
	$t \alpha 1/P \alpha 4$	(1)	3
	time 12 mins	(1)	
	(for any method, an answer of 6 mins scores 1 mark)		
8(c)(ii)	Use of equation , $V = IR$ or $P = V^2/R$ or $P = VI$		
	leading to increased current or power.	(1)	
	Cause damage/fuse to melt/		2
	circuit breaker to trip /element to burn out/wire to melt	(1)	Z
	Do not credit 'short circuit' and 'explosions'		
	Do not give 2nd mark if reference to overheating or fuses is related to)	
	resistance increasing		
	Total for question		9

Question	Answer	Mark
Number		
9(a)	Use of resistors in parallel formula	1
	$R = 9.1 \Omega$	1
	Example of answer	
	1/R = 1/10 + 1/100	
	1/R = 11/100	
	$R = 9.1 \Omega$	
(b)	Voltmeter is connected in parallel (stated or implied) OR voltmeter draws	1
	little/no current	
	Resistors in parallel formula with either R_V or large value used	1
	$1/R_V$ is very small/negligible OR calculated value of 9.1 Ω with comment	1
	Total for question	5